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Abstract

Most musical instruments consist on a set of dynamical subsystems connected at a number of
constraining points through which energy flows or tuning is achieved. For any physical sound
synthesis, one important difficulty deals with the manner to enforce these coupling constraints.
While standard techniques include the use of Lagrange multipliers or penalty methods, we explore
in this paper a different approach, the Udwadia-Kalaba (U-K) formulation, which is rooted on
analytical dynamics but avoids the use of Lagrange multipliers. Up to now, this general and very
elegant formulation has been nearly exclusively used for conceptual systems of discrete masses
or articulated rigid bodies, namely in robotics. Despite its natural extension to deal with flexible
systems modelled through their unconstrained modes, such an approach is surprisingly absent
from the literature. Here, we show the potential of combining the U-K equations for constrained
systems with the modal description, in order to simulate musical instruments. Our objectives are
twofold: (1) to develop the U-K equations for constrained flexible systems in which subsystems
are modelled through unconstrained modes, and (2) to apply this framework to compute the
coupled dynamics of the string/body vibration. This example complements our work on guitar
string modelling using penalty methods, and enables to compare results obtained from different
approaches. Simulations show that the proposed technique provides results of comparable
quality with a significant improvement in computational efficiency.
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Development of a modal Udwadia-Kalaba formulation
for guitar modelling

1 Introduction
Most musical instruments consist on a set of dynamical subsystems connected at a number
of constraining points, through which the vibratory energy flows or tuning can be achieved.
Coupling is therefore an essential feature in instrument modelling and, when addressing
physically-based synthesis, most modelling and computational difficulties are connected with
the manner in which the coupling constraints are enforced. Typically, these are modelled using
standard techniques such as Lagrange multipliers or penalty methods, each one with specific
merits and drawbacks. In this paper we explore a different approach, the Udwadia-Kalaba
(U-K) formulation, originally proposed in the early 90s for discrete constrained systems [1, 2],
which is anchored on analytical dynamics but avoids the use of Lagrange multipliers.

Up to now, this general, very elegant and appealing formulation has been nearly exclusively
used to address conceptual systems of discrete masses or articulated rigid bodies, namely in
robotics. To the authors best knowledge, the single exception in the literature is the work by
Pennestri et al. [3], who addressed a flexible slider-crank mechanism modelled using a Finite
Element Timoshenko beam formulation. However, in spite of the possible natural extension
of the U-K formulation to deal with flexible systems modelled through their unconstrained
modes, such promising approach is surprisingly absent from the literature. In the present
work we develop the potential of combining the U-K formulation for constrained systems
with the modal description of flexible structures, in order to achieve reliable and efficient
computations of dynamical responses, in particular for simulating the transient responses of
musical instruments.

The objectives of this paper are thus twofold: (1) to develop the Udwadia-Kalaba equations
for constrained flexible systems in which the various sub-structures are modelled through
unconstrained modal basis, and (2) to apply this formulation to compute the dynamical
responses of a guitar string coupled to the instrument body at the bridge. This illustration
complements extensive work already performed in the past by the authors on guitar
string/modelling using penalty methods, see Marques et al. [4] and Debut et al. [5],
thus enabling an interesting comparison between the computational efficiency using different
modelling techniques. These results demonstrate the computational efficiency of the proposed
technique, which for the application at hand, achieved simulations of comparable quality, at
least with an one-order of magnitude improvement in computational efficiency.

2 Theoretical formulation
Following on from Gauss’ Principle of Least Action, Udwadia & Kalaba developed an elegant
analytical treatment for the dynamics of discrete mechanical systems subjected to constraints.
In general mathematical terms, they proposed the following standard form for the study of the
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constrained dynamics
Mẍ = Fe(t)+Fc(t) (1)

which simply expresses, according to Newton’s second law of motion, the system response
x as the result of the application of an applied force field Fe(t) and some additional forces
Fc(t) stemming from a set of constraints. The U-K formulation then benefits from an
alternative expression of the usual constraint equations ψi(x, ẋ, t) = 0 (i = 1, . . . ,m), obtained
by differentiation with respect to time, which leads to a set of linear equality relations in terms
of the system accelerations, as:

A(x, ẋ, t) ẍ(t) = b(x, ẋ, t) , (2)

where A is referred to as the constraint matrix and b is a known vector. Their main result is
then to provide an explicit expression for the constrained dynamics x(t) and the constraint force
vector Fc(t), at each instant, which are respectively given by the fundamental equation and the
constraint force equation:

ẍ = ẍu +M−1/2B+(b−Aẍu) (3a)

Fc(t) = M1/2B+(b−Aẍu) (3b)

denoting B+ the Moore-Penrose pseudo-inverse of the matrix B = AM−1/2 which has the
property of uniqueness. In Eqs. (3), the vector ẍu represents the dynamical response of the
unconstrainted system, i.e. when no constraint is imposed, which is solution of:

ẍu = M−1Fe(t) (4)

while the second term in the right-side hand of Eq. (3a) accounts for the influence of the
constraints on the system dynamics, since the unconstrainted system must further comply with
the physical constraints. The superlative elegance of the U-K formulation lays in the fact that it
encapsulates, in a single explicit equation (3a), both the dynamical equations of the system and
the constraints applied, and allows, if needed, the knowledge of the constraining force through
(3b). In particular, no additional variables, such as Lagrange multipliers, are needed. Notably,
Eqs. (3) may be applied to linear or nonlinear, conservative or dissipative systems, and may
also be efficiently solved using a suitable time-step integration scheme for a given excitation.
Finally, it can be noticed that if no constraints are applied, the constraint force vector, and thus
the correcting term in (3a) is nil, so that the usual unconstrained formulation is recovered.

3 Modal formulation for the U-K equations
3.1 Fundamental equation

Although originally proposed for constrained discrete systems, the Udwadia-Kalaba formulation
can be extended to deal with continuous flexible systems contrained at some specific points.
Adopting a modal framework in which any physical quantity x(r, t) varying in space and time is
expressed as a modal superposition,

x(r, t) =
N

∑
n=1

qn(t)φn(x) , (5)
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where qn(t) are the modal amplitudes and φn(x) the modeshapes appropriate to the boundary
conditions, a formulation very similar to the previous U-K equation (3a) can be derived for the
modal responses of the constrained system. Projecting as usual the dynamical equations on
the modeshapes of the system, this yields:

q̈̈q̈q = q̈̈q̈qu +MMM−1/2BBB+(b−AAAq̈̈q̈qu) (6)

where q̈̈q̈qu are the modal accelerations of the unconstrained configuration, MMM = ΦT MΦ is the
modal mass matrix AAA = AΦc is the modal constraint matrices, BBB = AAAMMM−1/2, Φ being the modal
matrices and Φc the modal matrix of all modeshapes where constraints are defined. From
the knowledge of the constrained modal responses, the modal constraining force can also be
computed by multiplying the correcting term of Eq. (6) by the system modal mass matrix MMM.
Finally, any modal quantities can then be converted into the corresponding physical quantities
by modal summation of the standard form (5).

3.2 Coupled dynamical subsystems

The application of the U-K modal formulation to a set of vibrating subsystems coupled through
a number of kinematic constraints, can now be considered. In a modal description, the
dynamics of a given subsystem s subjected to an external force field, can be classically written
as a set of modal equations in terms of the modal amplitudes qqqs and its derivatives,

MMMsq̈̈q̈qs +CCCsq̇̇q̇qs +KKKsqqqs +FFFs
nl(qqq

s, q̇̇q̇qs) =FFFs
ext s = 1,2, . . . ,S (7)

where MMMs, CCCs and KKKs are diagonal matrices of the modal parameters, and FFFs
ext and FFFs

nl are the
modal force vectors stemming from the external and nonlinear force fields, which are obtained
by projection of the physical forces on the modal basis. According to Eq. (6), the U-K approach
requires the computation of the modal accelerations of the unconstrained system, which are
simply given by:

q̈qqs
u =

(
MMMs)−1FFFs s = 1,2, . . . ,S (8)

where FFFs denotes the vector of all the constraint-independent modal forces:

FFFs =FFFs
ext −CCCsq̇qqs−KKKsqqqs−FFFs

nl(qqq
s, q̇̇q̇qs) , s = 1,2, . . . ,S (9)

for which it is assumed that the vectors of modal constrained displacements and velocities are
known at each time-step. Assembling the modal quantities of the S subsystems in compact
vectors and block matrices, the unconstrained modal accelerations of the coupled system QQQu =
[qqq1

u,qqq
2
u, . . . ,qqq

S
u]

T read finally as:

Q̈QQu =MMM−1
[
FFFext −CCCQ̇QQ−KKKQQQ−FFFnl(QQQ,Q̇̇Q̇Q)

]
(10)

where the matrices MMM, CCC and KKK are block diagonal matrices set up by the submatrices of the
modal parameters of the various subsystems, built according to:

MMM≡


MMM1 000 . . . 000
000 MMM2 . . . 000
...

...
. . .

...
000 000 . . . MMMS

 CCC≡


CCC1 000 . . . 000
000 CCC2 . . . 000
...

...
. . .

...
000 000 . . . CCCS

 KKK≡


KKK1 000 . . . 000
000 KKK2 . . . 000
...

...
. . .

...
000 000 . . . KKKS

 (11)
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where the modal parameters of the matrices MMMs, CCCs and KKKs, defined according to the
modeshapes φ s

n, are given respectively as:

ms
n =

∫
Ds

ρ(rs)
[
φ

s
n(r

s)
]2drs, cs

n = 2ms
n ωs

n ζ s
n , and ks

n = ms
n (ω

s
n)

2 (12)

denoting ωs
n the circular eigenfrequency and ζ s

n the damping value. In Eq. (10), the column
vector QQQ = [qqq1,qqq2, . . . ,qqqS]T and Q̇̇Q̇Q describes the modal displacements and velocities for the S
constrained subsystems, while FFFext and FFFnl are the modal vectors associated to the external
and nonlinear interaction forces respectively.

Besides the unconstrained equation (10), the second set of equations to be considered in the
U-K formulation concerns the P constraints which couple the various subsystems, defined at
specific locations rs

c. In most practical situations, these are amenable to linear relationships by
appropriate differentiation with respect to time, leading to the standard form:

AAA(QQQ,Q̇̇Q̇Q, t)Q̈̈Q̈Q = b(QQQ,Q̇̇Q̇Q, t) (13)

where AAA = AΦc with

Φc =


Φ1

c 000 . . . 000
000 Φ2

c . . . 000
...

...
. . .

...
000 000 . . . ΦS

c

 (14)

where the Φs
c contains the modeshape vectors of each subsystem at the constraint location rs

c.
Finally, from Eqs. (10) and (13), one can compute at each time-step the constrained modal
accelerations through Eq. (6), as well as the constraining forces if needed.

4 The coupled guitar string/body/player vibration
For illustrative purpose, we formally address the coupled dynamics of a guitar string and body,
coupled at the instrument bridge, and including the influence of a stopping finger along the
fingerboard to control the frequency of the plucked tone. The vibrating elements are modelled
using the modal U-K formulation, using the unconstrained modal basis of the string and of
the instrument body, while the string/finger coupling is thought as a simple physical constraint
acting on the vibratory motion of the string.

4.1 Solutions for the unconstrained modal equations

According to (7), the forced response of the string can be formulated as a set of NS secondary-
order ODEs, written in the matrix form as:

MMMSq̈̈q̈qS(t)+CCCSq̇̇q̇qS(t)+KKKSqqqS(t) = fff ext(t) (15)

where the vector qqqS(t) describes the modal amplitudes of the string and fff ext(t) is the modal
force corresponding to the pluck excitation. Similarly, the modal response of the body can be
formulated as a set of NB secondary-order ODEs, written in the matrix form as:

MMMBq̈̈q̈qB(t)+CCCBq̇̇q̇qB(t)+KKKBqqqB(t) = 000 (16)
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where qqqB(t) are the modal amplitudes of the body motion. All the matrices in Eqs. (15)
and (16) are diagonal matrices of the modal parameters of the string and the instrument
body respectively, defined through their unconstrained modal basis. Compared to penalty
formulation, it is important to note that no external body forces are considered in Eqs. (15) and
(16) as the string/body coupling is formulated in terms of a constraint equation expressed at
the location of the bridge. Grouping together the dynamical equations (15) and (16), the modal
responses of the unconstrained system are formulated as a set of NS +NB modal equations,
written as:{

q̈qqS
u

q̈qqB
u

}
=

[(
MMMS
)−1 000

000
(
MMMB
)−1

](
−
[

CCCS 000
000 CCCB

]{
q̇qqS

q̇qqB

}
−
[

KKKS 0
000 KB

]{
qqqS

qqqB

}
+

{
fff ext(t)

000

})
(17)

The matrices in Eq. (17) are block diagonal matrices, which highlights that the unconstrained
dynamics is treated as if the modal amplitudes were independent.

4.2 Modal constraints equations

String/body coupling. Assuming a rigid transmission at the bridge between the string and the
body, the modal equations of the constrained system are required to satisfy a set of constraint
modal equations, stemming from the condition that, at the bridge location, the string motion
Y S(xB, t) must be the same as the instrument body motion at the string location Y B(rs, t).
Formally, this results in the condition:

Y S(xb, t)−Y B(rs, t) = 0 ⇐⇒
[
Φ

S(xB)
]TqqqS(t)−

[
Φ

B(rs)
]TqqqB(t) = 000 (18)

with the modeshape vectors

Φ
S(xB) =

[
φ

S
1 (xB)φ

S
2 (xB) . . .φ

S
NS
(xB)

]T
, Φ

B(rs) =
[
φ

B
1 (rs)φ

B
2 (rs) . . .φ

B
NB
(rs)
]T (19)

String/finger coupling. Following a simple strategy for modelling the influence of the string/finger
interaction, the string motion Y S(x f , t) must be nil at the finger location x f . To refine the
modelling and account for the finite width of the finger, several rigids constraint can be thought
at close locations x fi , so that the string/finger constraint equation becomes a set of F modal
equations of the form:

Y S(x fi(t), t) = 0 ⇐⇒
[
Φ

S(x fi)
]TqqqS(t) = 000 i = 1, . . . ,F (20)

with the modeshape vector

Φ
S(x fi) =

[
φ

S
1 (x fi)φ

S
2 (x fi) . . .φ

S
NS
(x fi)

]T (21)

Finally, assembling the two constraint conditions (18) and (20) into a compact form, the global
constraint equation (13) reads as:

AAAQ̈̈Q̈Q = b ⇐⇒



[
ΦS(xB)

]T −
[
ΦB(rs)

]T[
ΦS(x f1)

]T 000
...

...[
ΦS(x fF )

]T 000





q̈S
1(t)...

q̈S
NS
(t)

q̈B
1 (t)...

q̈B
NB
(t)


=



0
...
0

0
...
0


(22)
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4.3 Solutions for the constrained modal equations

Finally, for the case of interest, the constrained modal accelerations are readily computed by
the efficient recurrence:{

q̈̈q̈qS

q̈̈q̈qB

}
=

{
q̈̈q̈qS

u
q̈̈q̈qB

u

}
−MMM−1/2BBB+AAA

{
q̈̈q̈qS

u
q̈̈q̈qB

u

}
=WWW

{
q̈̈q̈qS

u
q̈̈q̈qB

u

}
with WWW = 111−MMM−1/2BBB+AAA (23)

from which the physical motions of the string and the body can be computed by modal
summation as usual.

5 Illustrative computations
5.1 System parameters

The present computations pertain to a single string with parameter values experimentally
identified in the work [6]. The string total length is L = 0.65 cm, with axial tensioning force
T = 73.9 N and mass per unit length 3.6111−3 Kg/m, transverse wave propagation velocity
cT = 143 m/s and bending stiffness B = EI = 4.10−5 N.m2, resulting in a fundamental frequency
of 110 Hz. To be coherent with the U-K formulation, the string modal basis is that of
the unconstained string, assumed pinned at the nut and free at the bridge, for which the
modeshapes φ S

n and modal frequencies f S
n are given by:

φ
S
n (x) = sin

(
(2n−1)πx

2L

)
, and f S

n (x) =
cT

2π
pn

(
1+

B
2T

p2
n

)
(24)

with pn = (2n− 1)π/2L and n = 1, . . . ,NS. Concerning the string modal damping, complex
dissipative phenomena must be accounted for, as thoroughly discussed by Woodhouse [6],
who proposed a pragmatic formulation for modal damping based on three loss parameters as:

ζ
S
n =

1
2

T
(
ηF +ηA/ωS

n
)
+ηBBp2

n

T +Bp2
n

(25)

where the loss coefficients related to internal friction, air viscous damping and bending damping,
fitted from experimental data, are for this string ηF = 710−5, ηA = 0.9 and ηB = 2.510−5. A total
number of 150 modes is considered in the computations, covering the frequency range up
to 20000 Hz, which proves a sensible compromise for convergence. For illustration, the first
modal parameters for the computed string are presented in Figure 1.

For the guitar body, the modal parameters were experimentally identified from a transfer
function measured at the bridge of a real-life instrument, with impact excitation applied in the
perpendicular direction of the soundboard. The input force was measured using a miniature
force sensor (Kistler type 9211) while the vibratory reponse was sensed by an accelerometer
(B&K 4375), both sensors being glued at the same location, on the bridge, close to the
string/bridge interaction point. Modal identification was then achieved in the frequency domain
by developing a MDOF algorithm based upon a curve fitting procedure - see [7]. The modal
parameters experimentally identified in the range 0-800 Hz are presented in Figure 2.
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Figure 1: First modal parameters for the
computed string.

Figure 2: Modal frequencies and damping
values of the instrument body.

5.2 Simulation results

In the presented simulations, the string is assumed to be plucked by a finger, at location xe =
0.9L from the bridge, and to be stopped with a tuning constraint on the fingerboard at x= 0.33L,
using a set of three rigid kinematic constraints. The string excitation is a linear force ramp 0-5
N, applied for the initial 10 ms of the simulation while the total simulation length is 10-s long.
For the time-step integration, a simple explicit Velocity-Verlet algorithm was implemented - see
for instance [8], using a time-step of 10−5 sec.

Figures 3 and 4 show the time-responses and corresponding spectra of the string motion,
computed at the locations of the excitation, the bridge and the finger, for a string constrained
by a stopping finger and a rigid motionless bridge, thus ignoring the vibrational behaviour of
the guitar body. As one would expect, the string motion shows the classical exponential decay
during the simulation, while it is virtually nil at the two constraint locations, thereby complying
with the physical constraints. One can also notice the effect of the constraining finger on
the string vibration in Figure 4, as the playing frequency is higher than both the fundamental
frequency of the string (55 Hz) and the tuning frequency of the pinned-pinned string (110
Hz). Also, since the modeled string is not ideal, high frequency fluctuations can be seen in
the string motion, prior to each reflexion pulse, which actually corresponds to the arrival of
precursor flexural waves. As evidenced by the small-amplitude peaks visible in the spectra of
Figure 4, a small amount of the vibratory energy actually flows from the excited region to the
nominally passive region of the string, i.e from the finger to the nut. The reason can be found in
the manner on how the string/finger constraint has been modeled in the present computation,
directly formulated in terms of kinematic constraints and without any dissipative element. More
complex modeling strategy can be thought for the string/finger interaction, in particular using
flexible-dissipative-inertial elementary subsystems, which then implies a larger system size.

Figures 5 and 6 then pertain to computations including the multi-modal dynamics of the
instrument body, which is coupled to the string at the bridge. A comparison between Figures
3 and 5 clearly highlights the influence of the mechanical response of the body on the string
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Figure 3: Time-history of string motion at
different locations along the string. Rigid
body.
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Figure 4: Spectra of the string motions at
different locations along the string. Rigid
body.

motion. In particular, the decrease of the string motion amplitude becomes more complex when
the body dynamics is included, since vibrational energy is transferred back and forth between
the two subsystems. Also, the global dissipative role of the instrument body is shown through
the shorter live of the string response. On the other hand, one can also notice peaks in the
response spectrum of the string which stem from the body modes. Finally, Figure 6 compares
the motions of the body and the string computed at the bridge, in order to give an illustration
of the kinematical constraint. As seen, the two curves are superimposed together, which is in
perfect agreement with the kinematical constraint considered at the bridge - see Eq. (18).

6 Conclusions
In this paper we developed a new approach for computing the dynamics of coupled flexible
systems, based on the general formulation of Udwadia-Kalaba which is becoming increasingly
popular in the field of multibody dynamics. The general U-K equations were adapted to address
coupled subsystems, linear or nonlinear, defined in terms of their unconstrained modal basis.
The U-K formulation shows a considerable potential to deal effectively with the dynamics of
physically modelled musical instruments, for which vibrational energy is exchanged between
various subsystems and tuning is achieved at a number of constraining locations. Therefore,
the formulation developed was applied on a guitar, including the fully coupled dynamics of
a string, tuned somewhere on the fingerboard, and the instrument body. The illustrative
computations presented highlight the role of the body dynamics on the string response, as well
the influence of the stopping finger model, which can partially affects the vibratory responses
of both the “active” and “passive” regions of the string. The results obtained are consistent
with those previously obtained by the authors when modelling string/body coupled vibrations
using penalty methods for the constraints. However, numerically, the present approach proved
significantly more efficient, at least by an order of magnitude. The proposed approach is
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Figure 5: Time-history and spectra of
string motion at 3 locations. Flexible body.
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currently being extended to address intermittent constraints between subsystems.
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