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Abstract

Tibetan bowls have been traditionally used for ceremonial or meditation purposes, but also in
contemporary music-making. They are handcrafted and produce different tones depending on
their shape, size, mass and their alloy composition. Most important is the sound producing
technique by impacting and/or rubbing, as well as the excitation location, the hardness and friction
characteristics of the excitation stick. In a previous paper, we developed a physically-based
method for nonlinear time-domain simulation of Tibetan bowls. Our computational approach,
based on a compact modal formulation, produces realistic dynamical responses. In the present
paper we focus on an interesting feature of Tibetan bowls: in order to produce self-excited
responses, the stick must rub the bowl against the external side of the rim, e.g. radially
pressing outwards the bowl center. Indeed, experimenting with many bowls showed that they
do not sing when rubbed internally. We start documenting this claim with experimental results
from representative bowls, and then exploit our computational model in order to reproduce the
observed behavior qualitatively. Our results are in good agreement with experiments, thereby
demonstrating that internally excited bowls are dissipative and hence unable to sing.

Keywords: Tibetan bowl, friction-induced dynamics, physical-based modelling, modal approach,
time-domain simulations



When singing bowls don’t sing: a numerical and
experimental investigation on the subtle dynamics of

Tibetan bowls

1 Introduction
Tibetan bowls have been used for centuries as musical instruments and ritual tools, specifically
in Buddhist monastics, and various use of these instruments can be today found in
contemporary music. They are handcrafted and produce different musically-interesting tones
according to their shape, size, mass and their alloy composition. Most important is the sound
producing technique which involves the local action of a massive stick, called the puja, and
includes both impact and friction excitations, thereby resulting in a combination of ringing
and singing tones. Sound emergence then comprises complex nonlinear phenomena usually
challenging to address by numerical analysis [1]. From the modelling standpoint, due to the
time-vayring excitation contact location of the puja on the bowl, the problem also shares some
fundamental concepts peculiar to moving-load dynamical problems [2], which are very common
in mechanical engineering applications.
In previous work by Inacio et al. [3], dynamic simulations of Tibetan bowls were presented and
a throrough analysis of the physical mechanisms leading to sound production was proposed.
Our efforts aimed at describing the physics as closely as possible, in order to provide a
full account of the global dynamics, therefore developing a physical model and simulating
the general trends observed in playing practice. Our computational approach, based on a
compact modal formulation, produced realistic vibratory responses - see reference [3], and
provides an efficient tool for closely examinating the subtleties of friction-induced axisymmetric
shells vibrations. Besides the number of remarkably stable periodic regimes which may be
triggered, an interesting dynamical feature of Tibetan bowls, surely blurred by the unusual
playing technique, is the nonexistence of steady-state musical regime when rubbed internally,
e.g. by pressing radially outwards the bowl center. Indeed, experimenting with many bowls
shows that they do not sing for internal excitation.
In this paper, we document this claim with both experimental and numerical results. To
that end, a number of representative Tibetan bowls of different size and mass has been
investigated experimentally for different rubbing conditions, and time-domain simulations have
been performed by exploiting our computational model which is also briefly presented here.
The simulation results are in qualitative agreement with the experiments, and demonstrate that
internally excited bowls are dissipative and hence unable to sing.

2 Experiments
Usually, when Tibetan bowls are rubbed, self-excited regimes settle after several seconds
of continuous excitation of the puja stick on the rim. For given initial conditions of the
tangential velocity and normal force applied by the musician on the puja, the motion builds
up progressively, with an exponential increase of the bowl vibration amplitude followed by
nonlinear saturation, and reaches a steady-state regime whose dynamical features strongly
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depend on the characteristics of the bowl/puja friction and contact interaction. As any nonlinear
self-excited oscillators, various dynamical regimes are thus obtained by changing the set of
initial conditions, and playing experience shows particularly that periodic regimes of different
fundamental frequencies may emerge. Other characteristic feature of bowl sound is the
superimposed beating behaviour, perceived by a fixed listener.

Figure 1: Singing Tibetan bowl and puja sticks used in the experiments.

A number of three Tibetan bowls of different size and mass, were played with pujas made of
different materials, namely rubber and wood - see Fig. 1. Either external or internal rubbing
excitations were attempted, and acoustic response signals were recorded by a microphone,
at a distance of about 1 m and an angle of 45◦ with the horizontal plane. The pressure
waveforms obtained for the 12 studied configurations are plotted in Fig. 2. As seen by
comparing results in Figs. 2a and 2b, while self-excited regimes were always reached for
external excitation, it has been impossible to produce a periodic regime by exciting internally
the bowl. Because of the mildly-controlled human playing, several attempts were performed
by changing somehow the normal force and/or the travelling velocity of the puja, and other
bowls, not documented here, were also tested, and always the same behaviour was present.
Physically, this suggests that energy transfers occuring in the system are strongly influenced by
the direction of the excitation, which can radically affects the global energy balance. Contrary
to externally friction-excited bowls, bowls excited internally manage to absorb all the energy
supply provided continuously by the puja. Figure 2a also evidences the superimposed beating
behaviour already mentionned. In [3], the origin of the beating is discussed, and surprisingly, it
is not related with the geometrical imperfections of the bowl structure, but is a manifestation of
the radiation pattern of Tibetan bowl when listeners are fixed in space, caused by the revolution
of the linearly unstable modes which follows the puja motion at the spinning frequency.

3 Computational model
A computational model for simulating the dynamics of Tibetan bowls has been proposed by
Inacio et al. [3]. It involves the dynamics of a flexible ring coupled to a rigid puja, and
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(a) External excitation.
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(b) internal excitation.

Figure 2: Waveforms of the pressure recorded for the 12 studied configurations. Small to large
Tibetan bowls were played, using either soft (rubber-like) or rigid (wood) puja. Recording level
is identical for all cases.

subjected to both impact and friction excitations. The model, based on the modal approach,
successfully reproduces the singing and ringing responses of the bowls when impacting or
rubbing its rim externally. Here, we remind the essential ingredients of the modelling and
present the dynamical modal equations. Similarly to [3], the formulation is written in a fixed
coordinate frame for the bowl, and refinements in the modelling are included by accounting
for the actual moving load on the bowl rim. As observed in other mechanical systems such
as pipes conveying flow [4], the influence of moving load can be important for a fundamental
understanding of the detailed dynamics. However, knowing that typical spinning frequency of
the puja stick is small compared to the frequency of the vibratory motions, one might expect
only a small influence of these terms for the problem at hand.

3.1 Dynamics of the bowl

Tibetan bowls are essentially axisymmetric shells, and as any structure of this type, they exhibit
normal modes in orthogonal pairs, with near-identical modal frequencies. When excited, the
vibratory response of the bowl wall Y(θ , t) involves the dynamical coupling of the radial Y R(θ , t)
and tangential Y T (θ , t) motions, and is given by:

Y(θ , t) = Y R(θ , t)er +Y T (θ , t)et (1)

where er and et are the unit vectors defining the radial and tangential direction respectively
(see Fig. 3). Adopting a modal framework for describing the dynamics, any physical bowl
motion can be expressed by modal superposition of the modal amplitudes and respective mode
shapes considered for the modal basis. For accurate modelling, the two orthogonal modal
families, called A and B, have to be accounted, and the radial and tangential motions are then
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Figure 3: Tibetan bowl excited by tangential rubbing of a massive puja.

formulated as:

Y R(θ , t) =
N

∑
n=1

(
qA

n (t)φ
A
Rn(θ)+qB

n (t)φ
B
Rn(θ)

)
, Y T (θ , t) =

N

∑
n=1

(
qA

n (t)φ
A
T n(θ)+qB

n (t)φ
B
T n(θ)

)
(2)

where qA,B
n are the modal amplitudes of the two modal families, and φ

A,B
Rn and φ

A,B
T n are the

corresponding mode shapes in the radial and tangential directions given by:

φ
A
Rn(θ) = cos(nθ), φ

A
T n(θ) =−sin(nθ)/n,

φ
B
Rn(θ) = sin(nθ), φ

B
T n(θ) = cos(nθ)/n

(3a)

(3b)

Following Inacio et al. [3], we may then built a dynamical model for the Tibetan bowl, formulated
as a set of 2N modal equations which takes the form:

mA
n q̈A

n (t)+ cA
n q̇A

n (t)+ kA
n qA

n (t) = f A
n (t)

mB
n q̈B

n (t)+ cB
n q̇B

n (t)+ kB
n qB

n (t) = f B
n (t)

(4a)

(4b)

where mA,B
n , cA,B

n , and kA,B
n are the modal parameters of the modal families A and B, respectively

given by:

mA,B
n =

∫ `

0
ρ`(θ)

∥∥φ
A,B
n (θ)

∥∥2d` , kA,B
n = mA,B

n (ωA,B
n )2 , cA,B

n = 2mA,B
n ω

A,B
n ζ

A,B
n (5)

with ` the bowl perimeter and ρ` the linear mass density. The modal excitations f A,B
n in Eq. (4)

stem from the projection of the external force f (x, t) on the respective modal basis, computed
as

f A,B
n (t) =

∫ `

0
f (x, t)φ A,B

n (x)d` (6)
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Since the sound producing technique involves impact and/or rubbing around the bowl rim, both
nonlinear impact and friction interaction are accounted in our modelling. Excitations will be
assumed as a travelling point-force of the form

fp(θc(t), t) =
[

f R(t)er + f T (t)et
]
δ (θ −θc(t)) (7)

where θc(t) = Ω t is the contact angle and Ω = vT/R is the spinning velocity of the puja, with vT
its tangential velocity imposed by the musician, and R the bowl radius. Substituting Eq. (7) in
(6), the modal forces are expressed in the form of:

f A,B
n (t) = f R(t)φ

A,B
Rn (θc(t))+ f T (t)φ

A,B
T n (θc(t)) (8)

3.2 Interaction forces

3.2.1 Radial interaction

The radial force exerted by the puja stick on the bowl at any angular location θc(t) can be
simply described by a penalty formulation such as:{

f R(t) = −Kc

(
Y R(θc, t)−Z(θc, t)

)
−Cc

(
Ẏ R(θc, t)− Ż(θc, t)

)
for contact

f R(t) = 0 for non-contact
(9)

where Kc and Cc are two penalty constants referred to as the contact stiffness and damping
coefficient, and which are directly related to the puja material. From Eq. (9), it can be seen
that the radial force f R(t) is negative for an external excitation since contact occurs when
Y R(θc, t) > Z(θc, t), resulting in an opposite positive force on the puja. For internal excitation,
contact occurs for Z(θc, t)> Y R(θc, t), and the reverse sign applies for the radial force.
For accurate modelling of the interaction, it must be reminded that equations are here
formulated in a fixed coordinate frame for the bowl, with a moving load acting on it, so that
the motion of the bowl fells by the puja differs than if the coupling location was fixed. One
consequence is that any time derivative of the bowl motion appearing in the formulations of the
bowl/puja interaction must be expressed using material derivatives as:

dY (θ(t))
dt

=
∂Y
∂ t

+vT
∂Y
∂θ

(10)

with vT the constant speed of the moving puja. Bowl velocities in Eq. (9) are then computed
as:

dY R(θ(t))
dt

∣∣∣∣
θc

=
N

∑
n=1

[
q̇A

n (t)φ
A
Rn(θc)+ q̇B

n (t)φ
B
Rn(θc)

]
+vT

N

∑
n=1

[
qA

n (t)
∂φ A

Rn

∂θ

∣∣∣∣
θc

+qB
n (t)

∂φ B
Rn

∂θ

∣∣∣∣
θc

]
(11)

For the problem at hand, however, one expects a small influence of the second term in the
right-hand-side of Eqs. (10) and (11) since normal playing uses low values of vT, less than
1 m.s−1, so that the spinning frequency Ω = vT/R remains small compared to the frequencies
involved in bowl vibrations.
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3.2.2 Friction interaction

It was found that contrary to bowed strings, friction-excited bars and shells are systems which
are sliding for most of the time [5]. For synthesis purpose, this is a very convenient because the
simulations of stick-slip regimes is usually tricky numerically, and small time-step are required to
capture the sudden stick-slip transitions when solving the equations through explicit numerical
schemes. Inacio et al. [3] implemented a simple approach for computing the highly non-
linear friction interaction force, and used a regularized friction law which seems adequate
for simulating singing Tibetan bowls. Retaining the same approach here, the friction force
is formulated as:{

f T (t) =−µd
(
Ẏc(θc, t)

)
| f R(t)| sign

(
Ẏc(θc, t)

)
if |Ẏc

(
θc, t

)
| ≥ ε sliding

f T (t) =−µS | f R(t)|Ẏc
(
θc, t

)
/ε if |Ẏc

(
θc, t

)
|< ε pseudo-adherence

(12a)

(12b)

where Ẏc(θc, t) = vT−Ẏ T (θc, t) is the bowl/puja relative velocity, µS is the static friction coefficient,
and µd is the dynamic friction coefficient used during sliding, which depends on the relative
bowl/puja tangential velocity as:

µd(Ẏc) = µD +(µS−µD)e−|Ẏc|/v0 (13)

where µD is an asymptotic limit of the friction coefficient when |Ẏc| → ∞ and v0 is a parameter
controlling the decay rate of the friction coefficient with Ẏc

(
θc, t

)
. The friction model (13) can

be readily fitted to typical experimental data by adjusting the empirical constants µS, µD and
v0. According to Inacio et al. [3], a regularization parameter ε of about 10−4 ms−1 seems
adequate for reproducing realistic behaviour of rubbed Tibetan bowls. Again, note that Ẏc used
in (12)-(13) must be computed through Eq. (11).

3.3 Dynamics of the Puja

The model for the excitation has now to be completed by writing the puja dynamics. The puja
is modeled as a rigid body of mass m, neglecting any elastic dynamics. Its radial motion Z(θc, t)
in the direction normal to the bowl surface (see Fig. 3), is simply governed by the rigid-body
dynamical equation:

mZ̈(θc, t) =± fN− f R(θc, t) (14)

where fN is a constant normal force imposed by the player, and f R(θc, t) is the radial component
of the puja/bowl interaction forces. Note that here either external or internal excitations are
considered. The normal force fN will be negative for an external excitation while it will be
positive for internal excitation.

3.4 Fully-coupled computational model

Grouping Eqs. (4), (9), (12) and (14), the self-sustained response of the coupled system is
formulated as a set of 2N +1 second-order modal ODEs, written in the matrix form as:MA 0 0

0 MB 0
0 0 m


q̈A
q̈B
Z̈

+

 CA 0 0
0 CB 0
0 0 0


q̇A
q̇B
Ż

+

 KA 0 0
0 KB 0
0 0 0


qA
qB
Z

=


fA(t)
fB(t)
fZ(t)

 (15)
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where the column vectors qA,B(t) represent the modal displacements for the two orthogonal
modal families, and fA,B and fZ are column vectors stemming from the modal projection of the
forces applied to the bowl rim and the puja respectively, written in a compact form as:

fA(t) = f T (t)
[
φ

A
T 1(θc), . . . ,φ

A
T N(θc)

]T
+ f R(t)

[
φ

A
R1(θc), . . . ,φ

A
RN(θc)

]T

fB(t) = f T (t)
[
φ

B
T 1(θc), . . . ,φ

B
T N(θc)

]T
+ f R(t)

[
φ

B
R1(θc), . . . ,φ

B
RN(θc)

]T

fZ(t) =± fN− f R(t)

(16a)

(16b)

(16c)

From Eq. (16), it can be seen that the modal forces stemming from the travelling puja fully
couple the 2N+1 degrees of freedom of our system.

4 Numerical simulations
Numerical computations were performed for reproducing the experimental observations, by
changing the direction of the constant normal force excitation, as well as for different
assumptions concerning the contact and friction characteristics of the bowl/puja interaction.
The case of softer and stiffer pujas were considered by testing contact stiffnesses Kc of 105

N/m and 106 N/m, with friction parameters of µS = 0.8, µD = 0.4, v0 = 0.1 and µS = 0.4, µD = 0.2,
v0 = 0.1 respectively. Numerical integration of the closed set of nonlinear coupled equations
(15) was achieved using a discrete version of the direct integration method [6, 7]. In order to
cope with the large settling times that arise with singing bowl, 15 seconds of computed data
were generated, enough to accomodate transients for external excitation, and modal equations
were solved using a safe time-step of 10−6 s. The simulations were based on modal data
identified experimentally on a typical Tibetan bowl, which can be found in [3], assuming 7
flexible modes for the bowl modal basis. The puja is modelled as a simple mass of 20 g,
moving at a tangential velocity of vT = 0.3 m.−1, and a constant normal force FN = ±3 N is
assumed (positive for external excitation and negative for internal excitation).
Fig. 4 shows the time-history and corresponding spectrogram of the bowl radial velocity, which
mostly controls the sound radiation, for four tested configurations. Results in Fig. 4a and
4b were obtained while rubbing the bowl externally with the soft and rigid puja respectively,
and those of Fig. 4c and 4c pertain to an internal excitation for similar conditions. As seen,
singing regimes are always reached for external excitation, while no self-excited motion is
obtained when exciting internally the bowl, so that simulated results support the qualitative
observations presented in Sec. 2. The computational model appears appropriate for studying
such subtle dynamical features, and some light can be shed by examining the contributions
of the conservative and nonconservatives forces in the energy balance. Finally, Figure 5 is a
plot of the bowl velocity at the contact point, together with the effect of the convective load on
both radial and tangential velocity components - see Eq. (11). The first comment concerns
the 3-order difference in amplitude between the velocity values, which highlights the very small
influence of the convective load on the global dynamics, and confirms the assumptions used in
[3]. Also, notice that its effect is more important on the radial than tangential components of the
bowl velocity, which is coherent with the analytic expressions of the mode shapes derivatives.
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(a) Soft puja.
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(b) Stiff puja.
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(c) Soft puja.
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(d) Stiff puja.

Figure 4: Radial velocity time-history and corresponding spectrogram for external (top) and
internal (bottom) rubbing excitation.

5 Conclusions
In this work, we started to document a striking feature of the dynamics of Tibetan singing
bowls as they do not sing when rubbed internally. This was first demonstrated simply
by playing experience, testing a representative set of Tibetan bowls with different pujas.
The nonexistence of stable musical regimes was also illustrated by nonlinear time-domain
simulations of a physical model, which thereby corroborate the experimental observations.
Greater understanding of the dissipative behaviour of internally-excited Tibetan bowls will be
addressed in future work, based on energy concerns.
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Figure 5: Tangential (red) and radial (green) bowl surface velocity at the contact point, and
respective influence of the terms corresponding to the convected load - see Eq.(11).
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