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Abstract

A study on the limits of bandlimited correction functions used to eliminate aliasing in audio signals
with discontinuities is presented. Trivial sampling of signals with discontinuities in their waveform
or their derivatives causes high levels of aliasing distortion due to the infinite bandwidth of these
discontinuities. Geometrical oscillator waveforms used in subtractive synthesis are a common
example of audio signals with these characteristics. However, discontinuities may also be in-
troduced in arbitrary signals during operations such as signal clipping and rectification. Several
existing techniques aim to increase the perceived quality of oscillators by attenuating aliasing suf-
ficiently to be inaudible. One family of these techniques consists on using the bandlimited step
(BLEP) and ramp (BLAMP) functions to quasi-bandlimit discontinuities. Recent work on antialias-
ing clipped audio signals has demonstrated the suitability of the BLAMP method in this context.
This work evaluates the performance of the BLEP, BLAMP, and integrated BLAMP functions by
testing whether they can be used to fully bandlimit aliased signals. Of particular interest are
cases where discontinuities appear past the first derivative of a signal, like in hard clipping. These
cases require more than one correction function to be applied at every discontinuity. Results ob-
tained show that if sufficiently many samples are corrected at each discontinuity, aliasing can be
virtually eliminated while preserving the spectral envelope of the signal. This work extends the
understanding of the BLEP, BLAMP, and integrated BLAMP functions as antialiasing tools.
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Eliminating aliasing caused by discontinuities using
integrals of the sinc function

1 Introduction
Voltage-controlled oscillators that generate harmonically-rich geometrical waveforms form part
of the basic building blocks of subtractive synthesis. Trivial digital implementations of these
audio oscillators are prone to aliasing distortion due to the inherent discontinuities found in
these waveforms and/or in their derivatives [1, 2, 3, 4, 5]. These discontinuities have infinite
bandwidth and must to be sampled at exceedingly high sampling rates in order to keep aliasing
down to a negligible level [6]. Aliasing can affect the overall sound quality of digital musical
systems, causing audible disturbances such as inharmonicity and beating [4].

The issue of aliasing caused by discontinuities is not restricted to audio synthesis applications.
Operations such as signal clipping and rectification also introduce discontinuities in the deriva-
tives of a signal. Previously, tools like oversampling and the harmonic mixer were the only
available methods to avoid the aliasing caused by these operations [7, 8]. However, these
approaches are far from ideal due to the infinite bandwidth required by these discontinuities.
Recent work on antialiasing clipped and rectified audio signals has focused on the use of cor-
rection functions commonly used to bandlimit digital oscillators [9, 10]. By correcting a few
points at every discontinuity, aliasing can be attenuated. This work examines the use of these
correction functions in both synthesis and processing applications in order to demonstrate that,
if applied at sufficiently many points, they can be used to fully eliminate aliasing. Of partic-
ular interest to this study are cases where the use of more than one correction function is
necessary, e.g. cases where discontinuities appear in the first and higher derivatives.

Synthesizing oscillator waveforms with reduced aliasing is a well documented subject in com-
puter music. In 1996, Stilson and Smith suggested generating these waveforms by integrating
a bandlimited impulse train, or BLIT [1, 11]. This method was further refined in 2001 by Brandt,
who suggested performing the integration process analytically and replacing signal discontinu-
ities with what he called the bandlimited step (BLEP) function [12]. This idea was later opti-
mized using polynomial approximations of the BLEP correction function (or polyBLEP) [2, 4],
and extended to synthesize triangular waveforms using a bandlimited ramp (BLAMP) function
[4, 13]. Moreover, recent work demonstrated the BLAMP function and its polynomial form (the
polyBLAMP) can also be used to reduce the aliasing caused by signal clipping and signal rec-
tification [9, 10]. Other available techniques to synthesize oscillator waveforms with reduced
aliasing include the differentiated parabolic waveform (DPW) [3], and polynomial transition re-
gions (PTR) methods [14].

This paper is organized as follows. Section 2 derives the BLEP, BLAMP, and integrated BLAMP
correction functions used in this study. Section 3 presents three synthesis examples where the
BLEP and BLAMP functions can be used to fully bandlimit trivially-sampled aliased signals.
Section 4 then considers the case of hard clipping, which introduces discontinuities in the first
higher derivatives of a signal. Finally, concluding remarks are provided in Section 5.
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2 Bandlimited correction functions
To bandlimit signals with discontinuities, we begin by modeling a discontinuity in the continuous-
time domain using the Heaviside step function, defined as

u(t) =
{

0 t < 0
1 t ≥ 0,

(1)

where t is time. This function simply “jumps” from 0 to 1 when t = 0. The derivative of (1)
w.r.t. time is defined as the Dirac delta function [15], so that

du(t)
dt

= δ (t). (2)

Since the delta function has a flat unity spectrum, its bandlimited form can be derived from
the inverse Fourier transform of an ideal brickwall lowpass filter with cutoff at the Nyquist limit
(i.e. at half the sampling rate). The resulting expression is known as the bandlimited impulse
function and forms the basis of the BLIT synthesis method [1]. It can be written as

h(0)(t) = fssinc( fst), (3)

where sinc(x) = sin(πx)/(πx) is the cardinal sine function and fs is the sampling frequency that
will determine the bandwidth of the impulse. Evaluating the integral of (3) yields the closed-form
expression for the BLEP function [12], defined as

h(1)(t) =
1
2
+

1
π

Si(π fst), (4)

where Si(x) is the sine integral Si(x) =
∫ x

0
sin(t)

t dt and the superscript (1) denotes it is the first
integral of (3). Figure 1(a) shows the time-domain form of this expression. For the sake of
simplicity, a unit sampling interval has been used to produce this figure. Figure 1(d) shows the
difference between (4) and (1), or BLEP residual function. To bandlimit a discrete-time signal
with a discontinuity, this residual function has to be centered around the exact point where the
discontinuity occurs, sampled at the nearest integer sample points and added to the signal. A
detailed explanation on how to use this residual function can be found in [4].

By integrating (4) we can derive expressions for the BLAMP function [4, 9, 10], given by

h(2)(t) = t
[

1
2
+

1
π

Si(π fst)
]
+

cos(π fst)
π2 fs

, (5)

and the integrated BLAMP function [16]:

h(3)(t) =
t2

2

[
1
2
+

1
π

Si(π fst)
]
+ t

cos(π fst)
2π2 fs

+
sin(π fst)

2π3 f 2
s

. (6)

The BLAMP and integrated BLAMP functions can be used to bandlimit discontinuities that
appear in the first and second derivative of a signal, respectively. Figures 1(b), (c), (e), and
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Figure 1: Time domain representation of the (a) BLEP function, (b) BLAMP function, (c)
integrated BLAMP function, and (d)–(f) their corresponding residuals.

(f) show the time-domain representation of the BLAMP and integrated BLAMP functions along
with their residual functions, computed by subtracting the trivial ramp [i.e. the integral of (1)]
and the integral of the trivial ramp, respectively.

As suggested by Figures 1(d), (e) and (f), the three residual functions do not have finite sup-
port. This means that truncating them and superimposing them at every discontinuity will in-
troduce new discontinuities, causing further artifacts. Additionally, these three functions are
computationally expensive due to the presence of the sine integral function. Both issues can
be addressed at once by storing a finite portion of these functions in a lookup table and apply-
ing a window function. The symmetry properties of all three residual functions can be exploited
to reduce table size. A thorough study on the table-based BLEP method using different window
functions can be found in [17].

The examples presented in the following sections of this study were implemented using table-
based residual functions oversampled by a factor 100 and windowed using a Hann window.
Additionally, cubic Lagrangian interpolation was used to reduce any round-off errors. A thresh-
old of −160 dB was chosen to evaluate the presence of aliasing, i.e. signals without aliasing
components above this threshold are considered bandlimited.
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Figure 2: Magnitude spectrum of a 1-kHz square signal (a) trivially sampled, (b) with 4-point
BLEP correction, and (c) with 2000-point BLEP correction. Circles indicate non-aliased
harmonics.

3 Bandlimited oscillator waveforms
To exemplify how the BLEP and BLAMP functions can be used to fully bandlimit audio signals
with discontinuities we begin by considering two simple test signals: the rectangular (or square
wave) and triangular oscillators. These two waveforms are not infinitely differentiable, and as
such, have a finite number of discontinuities.

Figure 2(a) shows the magnitude spectrum of a trivially-sampled square wave with a fundamen-
tal frequency of 1 kHz1. This waveform contains odd harmonics only and has two discontinuities
per period, which cause extremely high levels of aliasing distortion. To suppress this aliasing
using the BLEP method, the BLEP residual function must be centered at each discontinuity,
scaled by the peak-to-peak amplitude of the signal, sampled at the nearest sample points, and
added to the trivial waveform. Figure 2(b) shows the magnitude spectrum of the square wave
after 4-point BLEP correction. By correcting only 2 points on each side of every discontinuity, a
significant portion of the aliased frequencies has already been suppressed, with some spurious
components near DC and Nyquist attenuated by more than 100 dB.

Depending on the application, the 4-point correction may be considered sufficient. However,
the aim of this work is to demonstrate that these bandlimited correction functions can eliminate
all aliases if sufficiently many points are corrected. Increasing the scope of the correction to
more points gradually converges towards a practically bandlimited signal, with no aliases visible
above the −160-dB line. This is presented in Figure 2(c), where two thousand points have
been corrected at every discontinuity. When using long table-based BLEP residuals, correction
functions at each discontinuity will overlap with each other.

In triangular oscillators, discontinuities appear in the first derivative of the signal. These dis-
continuities can be easily detected by identifying any sharp edges or corners [10]. Figure 3(a)
shows the magnitude spectrum of a 3.9-kHz trivially-sampled triangular waveform. Even at a
higher fundamental, this signal exhibits less aliasing than the square wave due to the steep
rolloff of the integrated discontinuities, hence its smooth sound quality. The trivial triangular

1A fixed sampling rate fs = 44.1 kHz was used in this and subsequent examples in this study.
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Figure 3: Magnitude spectrum of a 3.9-kHz triangular signal (a) trivially sampled, (b) with
4-point BLAMP correction and (c) with 2000-point BLAMP correction.

signal can be antialiased by sampling and adding the BLAMP residual function at every corner.
As before, correcting 4 samples at every corner suppresses most of the aliasing [see Figure
3(b)], while pushing the remaining aliases below −160 dB also requires correcting two thousand
samples per discontinuity [see Figure 3(c)].

A more interesting behavior can be observed in audio signals where discontinuities appear
in both the waveform and its first derivative. An example signal with these characteristics is
the sawtooth-triangular waveform, included as one of the oscillator waveforms available in the
iconic Minimoog Model D synthesizer [18]. As hinted by its name, the sound of this waveform
can be described as a mixture between the sawtooth and the triangular signals. Figure 4(a)
shows two periods of a continuous-time sawtooth-triangular signal with an arbitrary fundamen-
tal frequency f0 = 1/T0. As shown in this diagram, this waveform has one discontinuity per
period. Computing the first derivative of this signal w.r.t. time yields a rectangular signal which
has two discontinuities per period [see Figure 4(b)]. For illustrative purposes only, normalized
arrows have been used to help indicate the location, magnitude and polarity of the differenti-
ated discontinuities. Parameters µ1 and µ2 represent the slope values of the rising and falling
portions of the original signal, which are determined by the fundamental frequency. Further
differentiation of this signal results in the alternating impulse train shown in Figure 4(c).
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Figure 4: Two periods of a (a) sawtooth-triangular signal, and (b)–(c) its first and second
derivatives, respectively.
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Figure 5: Magnitude spectrum of a 1-kHz sawtooth-triangular signal (a) trivially sampled,
(b) with 1200-point BLEP correction and (c) with 1200-point BLEP and BLAMP correction.

Figure 5(a) shows the magnitude spectrum of a heavily-aliased 1-kHz sawtooth-triangular signal
trivially sampled. Figure 5(b) presents the magnitude spectrum of the same signal after 1200-
point BLEP correction. A significant portion of aliasing has been removed and the harsh sound
caused by the aliases has already been reduced. The remaining aliases are solely caused
by the discontinuities in the first derivative. Applying an additional layer of correction using
the BLAMP function successfully attenuates the remaining aliases [see Figure 5(c)], restor-
ing the original analog sound of the signal. This example demonstrates the independence of
aliases caused by discontinuities in the waveform from those caused by discontinuities in the
first derivative, and how they must be handled separately when using bandlimited correction
functions.

4 Bandlimited hard clipping
In audio processing applications, where discontinuities are introduced by operations such as
signal clipping and signal rectification, discontinuities will extend to virtually all derivatives of
the signal. As with the sawtooth-triangular waveform, these discontinuities must be dealt with
separately in order to fully eliminate aliasing from the signal.

To observe this behavior, we consider the elementary case of a sinewave processed by a bipo-
lar hard clipper. In bipolar clipping, sample values above and below a predetermined value are
set to this value while the rest of the samples are left unaffected. This generates harmonic dis-
tortion and affects the timbre of the signal. Assuming an input sinewave normalized between
[−1,1] we define a clipping threshold L ∈ (0,1], where L = 1 means no clipping. Figure 6(a)
shows the magnitude spectrum of a 500-Hz clipped sinewave with clipping threshold L = 0.9.
This threshold means that only the tips of the signal have been clipped. Hard clipping gener-
ates corners in the waveform, which translate intro discontinuities in the first derivative of the
signal. Following our previous examples, we can bandlimit these corners using the BLAMP
residual function. In this application, the BLAMP residual must be scaled by the slope of the
original unclipped signal at the clipping points [9]. This parameter determines the magnitude of
the discontinuity introduced. Figure 6(b) shows the spectrum of the clipped sinusoid after 200-
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point BLAMP correction. On average, the entire level of aliasing has been reduced by roughly
30 dB. Here, increasing the correction scope has little to no effect on the magnitude spectrum
of the signal.
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Figure 6: Magnitude spectrum of a 500-Hz clipped sinewave (a) trivially sampled, (b) after
200-point BLAMP correction, and (c) after 200-point BLAMP and integrated BLAMP correc-
tion.

A second layer of correction can then be implemented using the integrated BLAMP residual
function [see Figure 1(f)], which upon sampling has to be scaled by the second derivative of
the signal (i.e. the curvature) at the clipping points. Figure 6(c) shows the result of this process,
where the remaining aliases have been further attenuated. The fact that the overall spectral
envelope of the signal was preserved after the correction process means that by using the
BLAMP and integrated BLAMP functions we are actually approximating the ideal solution. In
the time domain, this would be equivalent to recreating Gibbs phenomenon [9, 15].

From a perceptual point of view, the results obtained in the previous example after using only
the BLAMP function may be sufficient to label the signal as being “alias-free” since most aliases
lie below −100 dB. This is not the case at higher frequencies, where the value of both the slope
and curvature of the signal also increase. As a final example, Figure 7(a) shows the magnitude
spectrum of a 4186-kHz sinusoid (highest fundamental frequency on the piano) with the same
clipping threshold L = 0.9. The resulting signal only has three harmonics below the Nyquist limit
and high levels of aliasing above −100 dB. Applying the BLAMP and integrated BLAMP residual
functions at every clipping point yields the spectra seen in Figures 7(b) and (c). Once again,
dealing with both layers of discontinuities has significantly improved signal quality. For instance,
the level of the highest alias below the fundamental, at 1948 kHz, was attenuated from −56 to
−103 dB, a difference of 47 dB. Extending the range of the correction process did not improve
signal quality any further. This could be attributed to further discontinuities in higher derivatives
or to estimation errors introduced during the lookup table reading process.

These two examples showcase how bandlimited correction functions can work together to elim-
inate aliasing caused by discontinuities introduced during signal clipping. For low clipping
thresholds, where the curvature of the signal may be close to zero, the integrated BLAMP
correction will simply cancel out. In practical implementations, where processing thousands
of samples per second is simply not feasible, polynomial approximations of these correction
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functions can be used instead.
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Figure 7: Spectrum of a 4186-Hz clipped sinewave (a) trivially sampled, (b) after 200-point
BLAMP correction, and (c) after 200-point BLAMP and integrated BLAMP correction.

5 Conclusions
This work studied the use of various bandlimited correction functions to eliminate aliasing
caused by discontinuities in audio signals. In synthesis applications, these discontinuities may
be inherent to the shape of the waveform being synthesized. In a processing scenario, dis-
continuities may be introduced by operations such as signal clipping. The BLEP, BLAMP, and
integrated BLAMP functions can be used to bandlimit discontinuities that appear in the zeroth,
first, and second derivative of a signal, respectively. Audio signals with discontinuities in more
than one derivative, such as the sawtooth-triangular oscillator and hard-clipped signals, require
the use of more than one of these correction functions. For instance, eliminating aliasing from
a clipped signal requires the use of both the BLAMP and integrated BLAMP functions. Results
obtained from this study demonstrate that if sufficiently many samples are corrected at each
discontinuity aliasing can be completely eliminated.
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