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Abstract

Viscothermal losses for models of one-dimensional wave propagation in ducts are usually ex-
pressed, in the frequency domain, in terms of a series impedance/shunt admittance pair. A well-
known model is that of Zwikker and Kosten, for which the immittances are not expressed in terms
of rational functions of the frequency variable—and thus a difficult match to time domain simula-
tion methods. One approach to finite order rational approximation is based on a high-frequency
approximation, leading to a representation in terms of fractional powers of the frequency variable,
which can then be further approximated in terms of a rational function using standard techniques.
Another is to approximate the Zwikker-Kosten model directly, and a major design consideration is
to ensure positive realness under a finite order approximation, leading to a passive or dissipative
representation. Though closed-form solutions based on continued fraction expansion are avail-
able, another approach is to make use of optimisation over a parameterised finite order rational
function for which the positive realness property is inbuilt. This paper focuses on the optimisa-
tion problem, using standard iterative techniques such as gradient descent and its extensions,
particularly with regard to model order, and extensions to the case of optimisation in a discrete
time setting are also discussed. Optimisation results, for a variety of model orders and frequency
optimisation ranges, are presented.
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Optimisation techniques for finite order viscothermal
loss modeling in acoustic tubes

1 Introduction
The modeling of wave propagation in a duct is a problem of longstanding interest. If the duct
width is small relative to the wavelengths of interest then a one-dimensional model is appropri-
ate, and serves as a starting point for wind instrument modeling. Standard linear models are
usually framed in terms of frequency-domain quantities such as shunt admittance and series
impedance, which incorporate viscous and thermal losses in the boundary layer in the tube
[1], and such a frequency-domain description may be used immediately in order to arrive at
perceptually important characterisations such as the tube input impedance. In some cases, as
for, e.g., a cylinder, such an input impedance may be written in closed form; for more general
bore profiles, spatial integration strategies (such as the transmission matrix method [2]) may
be used in order to generate approximations to the input impedance.

In the interest of developing numerical methods for the case of nonlinear wave propagation,
then clearly a frequency domain method will be of limited use, and thus more recent re-
search has focused on time-domain characterisations, for which the shunt admittance and se-
ries impedance must be approximated. A usual approach is to make use of a high-frequency
approximation to these frequency-domain expressions [3, 4], leading to a PDE system of frac-
tional order in time—one example is the Webster-Lokshin system [5]; see [6] for a comparison
of other fractional-order PDE systems under similar approximations. At this point, one may
make use of standard discrete approximations to terms of fractional order [7], or, if working
in the transmission line context, make use of optimised filter designs [8]. One difficulty here
is in the high-frequency approximation itself, leading to a singularity at DC—this is an artefact
of the high-frequency approximation and not inherent to the Zwikker-Kosten model, for which
immittances are smooth in the limit of low frequency. In this article, optimisation methods are
used to find approximations to the Zwikker-Kosten form directly, under the important constraint
of passivity. Passive models and optimisation techniques for the continuous-time problem have
been discussed recently in [9]. The main contribution of this article is to extend such tech-
niques to perform optimisation directly in the discrete time domain, thus bypassing a major
source of error in a simulation setting.

The model of Zwikker and Kosten for viscothermal effects in a cylindrical duct is presented in
Section 2, followed by a particular finite order approximation, corresponding to a passive one-
port of Foster form, and suitable for optimisation; optimisation results, for this continuous time
model are presented. Such a passive representation is transferred to discrete time in Section
3 through the use of the bilinear transformation, leading to frequency warping effects. New
optmisation results are presented, taking into account such frequency warping, but maintaining
the passivity property of the resulting discrete time approximation. Concluding remarks and
perspectives appear in Section 4.
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2 Viscous and Thermal Effects in a Cylindrical Duct
Consider a cylindrical duct or tube, of length L, and of radius a. Wave propagation in the
duct may be characterised, in the frequency domain, in terms of pressure deviation from at-
mospheric P(ω,x), and particle velocity V (ω,x), provided that the wavelength range is long
compared with the tube radius; Here, ω is a an angular frequency, and x ∈ [0,L] is a spatial
coordinate where L is duct length. The coupled pair of differential equations describing the
system may be written [2] as

∂xP+ZV = 0 ∂xV +Y P = 0 . (1)

Here, Z(ω) and Y (ω) are the series impedance and shunt admittance of the tube and are due
to viscous and thermal effects in the tube boundary layer respectively. Forms due to Zwikker
and Kosten [1], pertaining to a tube of circular cross section, are:

Z =
jωρ

1−Fv
Y =

jω
ρc2 (1+(γ−1)Fθ ) (2)

where, ρ is air density, in kg/m3, c is the wave speed in m/s, and γ is the ideal gas constant.
The functions Fv and Fθ are defined by

Fv = φ

(√
− jrv

)
Fθ = φ

(√
− jrθ

)
φ (ζ ) =

2J1 (ζ )

ζ J0 (ζ )
. (3)

where j =
√
−1, J0 and J1 are zeroth and first order Bessel functions. The nondimensional

viscous/thermal boundary layer thicknesses rv and rθ are defined as

rv =
√

Sρω/πη , rθ =
√

SρCpω/πκ , (4)

where η is the viscosity coefficient, Cp the specific heat at constant pressure and κ the thermal
conductivity. All thermodynamic constants, as well as wave speed and density exhibit a weak
dependence on temperature; henceforth, in this article, they are set to values corresponding to
a temperature of 26.85◦C—see [3] for a table of such values.

2.1 Towards Time-domain Modeling: Further Approximations

The system given in (1) may be used directly in order to compute a frequency domain char-
acterisation of the tube; when complemented by a radiation condition, an exact closed form
expression for the input impedance results; the extension to the case of a tube of variable
cross section (in which case the system (1) may be extended to the first order form of Web-
ster’s equation, and where Z = Z(ω,x) and Y =Y (ω,x)) may be approximated through a spatial
numerical integration for a fixed frequency value. See, e.g., [2].

If, however, one is interested in developing a time domain model, suitable for an extension
to the case of nonlinear wave propagation, then further approximations are necessary. One
commonly-made approximation is to examine the expressions Z and Y in the high-frequency
limit, leading to frequency-domain expressions with fractional power dependence on frequency
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[4]. Such frequency domain representations have, of course, an equivalent representation in
the time domain, where terms differentiated to fractional order appear—see, e.g., [6]. The
Webster-Lokshin model results from further simplification [5].

From the time-dependent forms described above, the transition to discrete time results in
another approximation. For differential operators of fractional order, various techniques are
available—see, e.g., [7]. Major difficulties are that, first, the approximations to Z and Y are not
smooth in the limit of low frequencies, and also that when used in conjunction with a recursive
time-stepping method, there is normally no guarantee of numerical stability.

2.2 Passive Representations

The difficulties mentioned above can be sidestepped if one returns to the more general forms
of the immittances Z and Y , valid in both the high and low frequency ranges. Indeed, such
approximations are smooth in the limit of low frequencies. In what follows, only the viscous
series impedance will be considered; the shunt admittance can be treated with very near com-
plete symmetry. It is useful to first decompose Z into a sum of a propagative term and one
corresponding purely to viscous effects, written here as Zv, as

Z = jωρ +
jωρFv

1−Fv︸ ︷︷ ︸
Zv

(5)

See Figure 1, showing the real and imaginary parts of Zv as a function of frequency in Hertz.

Figure 1: Real (left) and imaginary (right) parts of Zv, as a function of frequency in Hz, for a
tube of radius 7.5 mm.

It has been pointed out in [9] that, when extended to the complex plane, Zv possesses an
infinite series of poles and zeros which interlace on the negative real axis, and thus may be
viewed as a positive real immittance, which may be realised in terms of elements of two types
(resistances and inductances). Among the canonical forms for such immittances are those
of Cauer type, corresponding to continued fraction expansion, and presented recently in the
present case by Thompson et al. [10]. Foster-type structures [11] are also available, and, as
mentioned in [9], the additive structure of the Foster decomposition lends itself to optimisation

4



procedures. When truncated to Mth order, an approximation to ZM
v to Zv may be written as

ZM
v = R0 +

M

∑
q=1

RqLq jω
Rq +Lq jω

(6)

for some parameters Rq ≥ 0, q = 0, . . . ,M, and Lq ≥ 0, q = 1, . . . ,M. Provided the non-negativity
conditions on these parameters are satisfied, the immittance remains positive real, or passive,
under any order of truncation. Though in principle, it is possible to set the pole/zero structure
of ZM

v to match that of Zv up to a given order, in practice it is more useful to retain this structure
as a starting point for optimisation procedures.

2.3 Optimisation

There is great design flexibility using the finite order model given in (12). In this case, the
objective function chosen will be

E =
N

∑
k=1

∣∣∣∣ZM
v (ωk)−Zv(ωk)

Zv(ωk)

∣∣∣∣2 (7)

over a set of N frequencies ωk, k = 1, . . . ,N covering a range of interest (which does not nec-
essarily include the DC frequency). In order to ensure that the approximation remains passive
through the optimisation procedure, it is useful to rewrite ZM

v as

ZM
v = eb0 +

M

∑
q=1

ebq jω
eaq + jω

(8)

in terms of the real parameters aq, q = 1, . . . ,M and bq, q = 0, . . . ,M, which will be used directly
in the optimisation procedure.

As is well known, using standard gradient descent can lead to extremely slow convergence,
and this is indeed the case here; much better is Newton’s method, requiring the calculation of
the Hessian of the objective function from (7); again, due to the simple additive form of (8), this
is calculated in a straightforward manner. Optimisation results, for the particular choice of Zv

as illustrated in Figure 1, for orders M = 4, M = 8 and M = 16 are shown in Figure 2, for both
a wide frequency range (0.1 Hz to 10000 Hz), and for a narrow range corresponding to the
musical range in wind instruments (20 Hz to 3000 Hz). These results are noticeably superior to
those presently previously in [9]. Notice that these fits take into account the reactive behaviour
of Zv; if one is only interested in loss modeling, one can do even better if one optimises over
the real part of Zv alone.

3 Discrete Time
In a discrete-time setting, approximations to the viscothermal immittances are necessary. This
is true across a variety of methodologies, including, e.g., digital waveguide models [8], where
a consolidated filter representing loss over the entire bore length is used, and also in the case
of finite difference time domain methods, where such losses are approximated locally [6].
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Figure 2: Fractional error in the real part of the approximation of ZM
v to Zv, as a function of

frequency in Hz, for different orders M of approximation. Left: error over a wide frequency
range of 0 Hz to 10000 Hz, and right, error over a narrow range of frequencies 20 Hz to 3000
Hz.

The Foster structure presented in (12) above represents a passive approximation to the impedance
Zv, for any real values of the parameters bq, q = 0, . . . ,M and aq, q = 1, . . . ,M. It is useful to pre-
serve this passivity property in the discrete-time equivalent. A well-known discretisation rule
which preserves the passivity property in discrete time is the trapezoid rule, which, in the fre-
quency domain, may be written as the mapping

s−→ 2
T

1− z−1

1+ z−1 (9)

where z = esT represents a unit advance of T seconds; such a discretisation rule, when trans-
ferred to a discrete time algorithm, leads to computable structures at a sample rate of 1/T . A
positive real function, corresponding to a passive immittance, is mapped to a function which is
positive real in the outer disk [12]. See [13] for a description of the use of such viscothermal
loss filters within a complete simulation of an acoustic tube.

3.1 Frequency Warping

One obvious difficulty with the optimisation procedure described above is that it does not take
into account frequency warping due to the mapping (9). That is, for real frequencies ω, where
ω = Im(s), the mapping (9) can be written as

ω −→ ω̃ =
2
T

tan(ωT/2) (10)

The optimised impedances Zv (ω) are thus mapped to the discrete-time impedances Zv (ω̃),
which are no longer a good match to the reference impedance Zv, and increasingly so with
filter order M. The effects of warping can be seen, even at relatively high sample rates. See
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Figure 3 at left, illustrating the effects of warping on the error in the impedance approximation,
for a narrow-range optimisation, when operating at a sample rate of 100 kHz.

Figure 3: Fractional error in the real part of the discrete-time approximation of ZM
v (ω̃) to

Zv(ω), as a function of frequency in Hz, for different orders M of approximation, and over
a narrow range of frequencies 20 Hz to 3000 Hz. The sample rate is 100 kHz. Left: error
when continuous-time optimised design parameters are used, and right: under frequency-
warped optimisation.

The obvious approach to optimisation, then, is to build such warping directly into the cost
function, which may be redefined as

E =
N

∑
k=1

∣∣∣∣ZM
v (ω̃k)−Zv(ωk)

Zv(ωk)

∣∣∣∣2 (11)

again over a set of N frequencies ωk, k = 1, . . . ,N covering a range of interest, with ω̃k =
(2/T ) tan(ωkT/2), where ZM

v (ω̃) is defined as

ZM
v (ω̃) = eb0 +

M

∑
q=1

ebq jω̃
eaq + jω̃

(12)

Results are clearly superior using optimisation over warped frequencies—see Figure 3 at right.

One implication is that designs parameters must be obtained separately through optimisation
for each target sample rate. The results differ, but in all cases, results are noticeably improved
when an optimisation is performed taking into account warping effects. See Figure 4, illustrating
approximation errors at a variety of sample rates.
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Figure 4: Fractional error in the real part of the discrete-time approximation of ZM
v (ω̃) to

Zv(ω), as a function of frequency in Hz, for M = 8, and over a narrow range of frequencies
20 Hz to 3000 Hz, for both warped and unwarped designs. Sample rates are 30 kHz (left),
50 kHz (center) and 100 kHz (right).

4 Concluding Remarks
In this short paper, passive discrete-time approximations to viscothermal immittances have
been presented. This extends previous work on optimised designs in the continuous time case
in [9]. The main result is that through a particular choice of immittance (namely the Foster
form), passivity may be ensured by maintaining non-negativity constraints on the immittance
parameters through the optimisation procedure. This may be extended to the fully discrete
case in a passivity-preserving discretisation rule is employed—in this case, the trapezoid rule
or bilinear transformation. In addition, the optimisation may be performed directly in the discrete
time domain, bypassing any frequency warping effects.

Such optimised designs, though they can be extremely accurate, can pose some difficulties is
used in conjunction with a time domaiin numerical method. One is that optimisation must be
performed anew for each distinct sample rate, for best results. Another more general problem
is that in the case of tubes of variable cross section, a distinct optimised design should be
obtained as a function of bore radius. Thus there may be some advantage in terms of algorithm
simplicity, in using closed form designs, such as the Cauer structure proposed in [10], though
higher order designs will be necessary in practice, particularly in musical applications.
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